历史上增加可感知色彩数量的技术



历史上增加可感知色彩数量的技术 

Pallete swapping(色彩转换)用于增加 8-bit和16-bit游戏的内容,同时减少了创建多重2D子画面(sprite)的负担。通过重复使用子画面来增加游戏角色和道具只需改变色彩,简单方便。 

 

Pallete swapping还用于增加游戏不同场景的色彩。在 3D渲染技术和32-bit全彩游戏之前,都是用Palette cycling(色彩轮换)来制作水、火和其他环境元素的动画效果,比如 S.P.Y. Special Project Y. Color使用了一个平面图像和256色画板(在当时都是可以渲染的视频卡)。视觉效果/动画效果是通过画板上不同色彩的轮换完成的,来制造物体在动的错觉。 

 

抖动(Dither)技术通过交叉已有色彩的像素来打造新的色彩,比如将无数黄色和绿色像素以棋盘模式混合,就得到了近似的“黄绿色”。下图是游戏“Aladdin(阿拉丁)”运用抖动技术打造的云朵和沙漠的截图。 

 

色彩生物学 

物体反射的光线抵达视网膜后,大脑才能感知到色彩。色彩不同,产生的生物效应也不同,且每个人看到的“同一种色彩”也不完全一样——以上因素都会影响玩家的游戏体验。 

以红色产生的生物效应为例,看到红色时,晶状体会凸起,将反射红光的物体的物象落在视网膜上,因此感知到的红色区域会造成“前进”的印象。这也许能够解释红色更能引起注意的原因。“ Mirror's Edge(镜之边缘)”等游戏大量使用红色,相似的暖色跟冷色放在一起的时候,也会造成“前进”的印象。 

游戏中的色盲现象 

色盲也称色觉缺失,指正常光线条件下丧失了看到色彩,或感知色彩差别的能力。 

大约1/20的男性和1/200的女性受到色盲问题困扰。最常见的是不能辨别红色和绿色的色盲人群。所以这些人无法分辨游戏中的红色和绿色。下面左图显示的是正常视觉,右图是非正常视觉。 

 

以往大部分游戏在设计过程中并不会考虑这种“例外情况”,但如今很多设计者也开始照顾这些特殊人群,比如通过形状、文字、花纹等视觉线索来替代色彩差别,起提示作用。 

在第一人称射击游戏中,常见的问题之一就是使用红色和绿色的指示符来区分敌我。一般解决方案是代之以蓝色和橘色的指示符。游戏“Call of Duty: Black Ops (使命召唤:黑色行动)”就是用了这一方法,开发商Treyarch(美国电子游戏开发公司)还雇佣了专门的游戏测试员来排除可能对色盲人群造成困扰的问题。 

色盲人群眼中的游戏场景究竟是怎样的, 本文给了几个例子。 

 

不可感知色 

不可感知色(或“禁色”)指的是:生物意义上视网膜不能接收的色彩。不可感知色并非不同色彩的混合,而是同时与两种色彩相近,比如同时像红色和绿色,或黄色和蓝色。 

红光刺激视网膜上的视锥细胞,眼睛就看到了红色;而绿光抑制视锥细胞,眼睛才看到绿色。大部分色彩会引发神经细胞同时产生不同效应,但红光和绿光是相互抵消的,意味着无法在同一个位置同时看到红光和绿光,蓝光和黄光也是同样的道理。 

很多实验证明不可感知色并非完完全全不可感知,眼球追踪器或特殊练习可以使视锥细胞疲劳,在这种情况下,完全有可能看到不可感知色。最近游戏“Diatomic Number ”使用了Oculus Rift头戴显示器,让玩家能够看到不可感知色。 

 

来源Gamasutra | 作者Herman Tulleken, Jonathan Bailey (翻译/张新慧 审校/唐小引)


0