现在来进入sparse autoencoder的一个实例练习。这个例子所要实现的内容大概如下:从给定的很多张自然图片中截取出大小为8*8的小patches图片共10000张,现在需要用sparse autoencoder的方法训练出一个隐含层网络所学习到的特征。
这节课来学习下Deep learning领域比较出名的一类算法——sparse autoencoder,即稀疏模式的自动编码。我们知道,deep learning也叫做unsupervised learning,所以这里的sparse autoencoder也应是无监督的。
前面的文章已经介绍过了2种经典的机器学习算法:线性回归和logistic回归,并且在后面的练习中也能够感觉到这2种方法在一些问题的求解中能够取得很好的效果。现在开始来看看另一种机器学习算法——神经网络。
上一节已经介绍了regularization项在线性回归问题中的应用,这节主要是练习regularization项在logistic回归中的应用,并使用牛顿法来求解模型的参数。
本节主要是练习regularization项的使用原则。因为在机器学习的一些模型中,如果模型的参数太多,而训练样本又太少的话,这样训练出来的模型很容易产生过拟合现象。
本节来练习下logistic regression相关内容,这里给出的训练样本的特征为80个学生的两门功课的分数,样本值为对应的同学是否允许被上大学,如果是允许的话则用’1’表示,否则不允许就用’0’表示,这是一个典型的二分类问题。
其实在上一篇博文中已经简单介绍过一元线性回归问题的求解,但是那个时候用梯度下降法求解时,给出的学习率是固定的0.7.而本次实验中学习率需要自己来选择,因此我们应该从小到大(比如从0.001到10)来选择,通过观察损失值与迭代次数之间的函数曲线来决定使用哪个学习速率。
本文是多元线性回归的练习,这里练习的是最简单的二元线性回归。本题给出的是50个数据样本点,其中x为这50个小朋友到的年龄,年龄为2岁到8岁,年龄可有小数形式呈现。
最近打算稍微系统的学习下deep learing的一些理论知识,打算采用Andrew Ng的网页教程UFLDL Tutorial,据说这个教程写得浅显易懂,也不太长。不过在这这之前还是复习下machine learning的基础知识。内容其实很短,每小节就那么几分钟,且讲得非常棒。